-
[출간] 실전 금융산업 빅데이터 분석(2023.06.19)About 2023. 7. 8. 21:15반응형
2021년 9월 처음으로 출간한 실무 예제로 끝내는 R 데이터 분석(예스24) 이후에
오랜기간 금융 산업에서 다양한 분석을 진행하면서 어떤 내용이 또 다른 금융 프로젝트를 준비하는
우리에게 도움이 될 수 있을지 항상 고민이 깊었습니다.
그 결과 고객을 파악하고
이를 바탕으로 실제 서비스 하는 모든 과정을 녹여놓은
한 권의 책을 출간하게 되었습니다.
이 책으로 하여금 금융산업에서 빅데이터가 어떻게 활용되고 있는지
금융권에 대한 궁금증을 갖고 있던 학생 또는 타 직종에 근무하고 있는 분들께
도움이 될 것으로 기대합니다.
또한, 금융권 내부에서 근무하면서 타 사이트에서 적용했던 실 사례를
볼 수 있는 좋은 기회라고 판단합니다.
글을 작성하고 있는 7월 8일 기준으로 현재 온/오프라인에서 판매되고 있으며,
지난 6월 19일부터 판매하기 시작했습니다.
https://www.yes24.com/Product/Goods/119511113
표지
목차
1부 금융산업의 빅데이터 분석
_1장 금융산업의 빅데이터
__1.1 빅데이터 시대의 도래
___1.1.1 주요 시장 동향
___1.1.2 주요 정책 추진 동향
__1.2 빅데이터란?
___1.2.1 빅데이터의 의의 및 특징
___1.2.2 빅데이터의 활용 가치
___1.2.3 빅데이터 분석
___1.2.4 빅데이터 분석 방법론
___1.2.5 탐색적 데이터 분석
__1.3 빅데이터 활용 분야
___1.3.1 해외 빅데이터 활용 사례
___1.3.2 국내 빅데이터 활용 사례
___1.3.3 금융산업에서의 빅데이터 활용 사례
2부 분석 과제를 위한 준비
_2장 금융 빅데이터 사전컨설팅
__2.1 빅데이터 분석 과제 선정
___2.1.1 금융산업에서의 빅데이터 분석 및 활용 현황
___2.1.2 빅데이터 분석 과제 선정 방법론
3부 고객 분석
_3장 통합 고객 다차원 분석 및 고객 세분화
__3.1 개요
___3.1.1 고객 분석의 배경 및 목적
___3.1.2 금융산업에서의 고객 세분화 사례
___3.1.3 분석 모형 프로세스
__3.2 통합 고객 다차원 분석
___3.2.1 분석 대상 테이블 선정
___3.2.2 분석 대상 고객 선정
___3.2.3 분석 대상 테이블 탐색
___3.2.4 데이터 탐색 및 인사이트 발견
__3.3 고객 세분화
___3.3.1 세분화 방법 및 선정 근거
___3.3.2 군집 분석
___3.3.3 그리드 방식
__3.4 결론
___3.4.1 분석 과제 요약
___3.4.2 한계점 및 고도화 방안 제시
_4장 우수고객 및 고객 이탈 분석
__4.1 개요
___4.1.1 우수고객 및 고객 이탈 분석의 배경 및 목적
___4.1.2 산업별 적용 사례
___4.1.3 모델 개발 시 고려사항
__4.2 탐색적 데이터 분석
___4.2.1 분석 모형
___4.2.2 데이터 수집 및 전처리
___4.2.3 데이터 탐색 및 인사이트 발견
__4.3 결론
___4.3.1 분석 과제 요약
___4.3.2 향후 연구
_5장 VoC 민원 분석 및 위험민원 예측
__5.1 개요
___5.1.1 민원 분석 배경 및 목적
___5.1.2 텍스트 마이닝
__5.2 민원 분석
___5.2.1 데이터 수집
___5.2.2 데이터 전처리 및 EDA
___5.2.3 빈도 분석
___5.2.4 토픽 모델링
___5.2.5 월별 위험민원 추세
__5.3 결론
___5.3.1 분석 과제 요약
___5.3.2 향후 연구
4부 상품 추천
_6장 상품 추천 시스템
__6.1 개요
__6.2 추천 모델
___6.2.1 무작위 추천
___6.2.2 그룹 기반 추천
___6.2.3 연관 규칙 분석
___6.2.4 콘텐츠 기반 필터링
___6.2.5 협업 필터링
_7장 보유 상품 기반 상품 추천
__7.1 개요
___7.1.1 기존 P사의 금융상품 추천 방식
___7.1.2 목표에 따른 추천 모델 방향성
__7.2 설계 방향
__7.3 탐색적 데이터 분석
___7.3.1 탐색 테이블 선정
___7.3.2 EDA 분석 및 인사이트
__7.4 모델 개발
___7.4.1 데이터 전처리
___7.4.2 모델 학습
___7.4.3 상품 추천 결과 추출
_8장 체크카드 사용 실태에 따른 상품 추천
__8.1 개요
___8.1.1 체크카드 사용 실태에 따른 상품 추천 배경 및 목적
___8.1.2 기존 P사의 체크카드 추천 방식
___8.1.3 타사의 카드 추천 방식
__8.2 설계 방향
___8.2.1 진행 추천 방식
___8.2.2 최종 모델 선정
___8.2.3 설계 방향 선정
__8.3 탐색적 데이터 분석
___8.3.1 탐색 테이블 선정
___8.3.2 데이터 탐색
__8.4 모델 개발
___8.4.1 데이터 전처리
___8.4.2 모델 추천 프로세스
_9장 접촉 로그 데이터 기반 관심상품 추천
__9.1 개요
___9.1.1 현 상태 우체국의 상품 추천 방식
___9.1.2 과제의 목적
___9.1.3 접촉정보 분석 사례
__9.2 설계 방향
__9.3 탐색적 데이터 분석
___9.3.1 탐색 테이블 선정
__9.4 모델 개발
___9.4.1 데이터 전처리
___9.4.2 모델 프로세스
_10장 서비스화 및 결과 전달
__10.1 개요
__10.2 추천 결과 적재
__10.3 추천 사유 전달
__10.4 추천 모델 평가
___10.4.1 추천 모델 평가 방법
___10.4.2 추천 모델 평가 과정
__10.5 빅데이터 분석 기반 상품 추천 서비스
5부 금융산업 빅데이터 분석 환경
_11장 빅데이터 분석 및 활용 플랫폼
__11.1 빅데이터 플랫폼 구성
__11.2 빅데이터 플랫폼 역할
___11.2.1 내부 데이터 수집
___11.2.2 외부 데이터 수집
___11.2.3 배치 프로그램
__11.3 빅데이터 플랫폼 활용
___11.3.1 빅데이터 분석 환경
___11.3.2 배치 프로그램
___11.3.3 태블로를 활용한 데이터 시각화반응형'About' 카테고리의 다른 글
[강의] 원데이태블로 6기 모집공고 (1) 2023.04.21 기초부터 실무까지 Tableau 시각화(2023.01.06) (2) 2023.01.06 [저자직강] 실무 예제로 끝내는 R 데이터 분석(2022.03.14) (1) 2022.03.14 [출간] 실무 예제로 끝내는 R 데이터 분석(2021.09.07) (12) 2021.09.02 Who am I? (5) 2020.04.15